Tema

my blog

the best my student ( SMA Negeri 1 Belo )

Asal Usul Fisika

Fisika (Bahasa Yunani: φυσικός (physikos), "alamiah", dan φύσις (physis), "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.

Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai "ilmu paling mendasar", karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.

Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika, yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori fisika.


Sabtu, 14 November 2009

simulasi

Simulasi 1


4. medan magnet pada toroida

Pendahuluan

Toroida adalah sebuah solenoida yang dilengkungkan sehingga berbentuk lingkaran kumparan.

Besarnya medan magnet ditengah-tengah Toroida ( pada titik-titik yang berada pada garis lingkaran merah ) dapat dihitung

  • Bo = Meda magnet dititik ditengah-tengah Toroida dalam tesla ( T )
  • N = jumlah lilitan pada Solenoida dalam lilitan
  • I = kuat arus listrik dalam ampere ( A )
  • a = rata-rata jari2 dalam dan jari-jari luar toroida dengan satuan meter ( m )
  • a = ½ ( R1 + R2 )

Pada gambar anda anak panah merah adalah arah arus sedang tanda panah biru arah medan magnet.

Contoh :
Sebuah Toroida terdiri dari 6000 lilitan dialiri arus listrik sebesar 10 A . Jika jari-jari dalam dan luar berturut-turut 2 dan 4 meter . Tentukan besarnya induksi magnet ditengah toroida !
Jawab :
Diketahui : N = 6000 lilitan
I = 10 A
R1 = 2 meter
R2 = 4 meter
a = ½ ( 2 + 4 ) = 3 m
Ditanya : Bo = ……… ?
Dijawab :

2. medan magnet pada solenoida

Medan Magnet pada Solenoida

Sebuah kawat dibentuk seperti spiral yang selanjutnya disebut kumparan , apabila dialiri arus listrik maka akan berfungsi seperti magnet batang.

Kumparan ini disebut dengan Solenida

Besarnya medan magnet disumbu pusat (titik O) Solenoida dapat dihitung

Bo = medan magnet pada pusat solenoida dalam tesla ( T )
μ0 = permeabilitas ruang hampa = 4п . 10 -7 Wb/amp. M
I = kuat arus listrik dalam ampere ( A )
N = jumlah lilitan dalam solenoida
L = panjang solenoida dalam meter ( m )

Dengan arah medan magnet ditentukan dengan kaidah tangan kanan. Arah arus menentukan arah medan magnet pada Solenoida.

Besarnya medan magnet di ujung Solenida (titik P) dapat dihitung:

BP = Medan magnet diujung Solenoida dalam tesla ( T )
N = jumlah lilitan pada Solenoida dalam lilitan
I = kuat arus listrik dalam ampere ( A )
L = Panjang Solenoida dalam meter ( m )

Contoh :
Sebuah Solenoida panjang 2 m memiliki 800 lilitan. Bila Solenoida dialiri arus sebesar 0,5 A, tentukan induksi magnet pada :
a. Pusat solenoida
b. Ujung solenoida

Jawab :
Diketahui : I = 0,5 A
L = 2 meter
N = 800 lilitan
Ditanya : a. Bo = ............ ?
b. BP = .......... ?
Dijawab :

2. medan magnet di sekitar kawat melingkar

Medan Magnet di Sekitar Kawat Melingkar

Besar dan arah medan magnet disumbu kawat melingkar berarus listrik dapat ditentukan dengan rumus :

Keterangan:

  • BP = Induksi magnet di P pada sumbu kawat melingkar dalam tesla ( T)
  • I = kuat arus pada kawat dalam ampere ( A )
  • a = jari-jari kawat melingkar dalam meter ( m )
  • r = jarak P ke lingkaran kawat dalam meter ( m )
  • θ = sudut antara sumbu kawat dan garis hubung P ke titik pada lingkaran kawat dalam derajad (°)
  • x = jarak titik P ke pusat lingkaran dalam mater ( m )

dimana

Besarnya medan magnet di pusat kawat melingkar dapat dihitung

  • B = Medan magnet dalam tesla ( T )
  • μo = permeabilitas ruang hampa = 4п . 10 -7 Wb/amp. m
  • I = Kuat arus listrik dalam ampere ( A )
  • a = jarak titik P dari kawat dalam meter (m)
    = jari-jari lingkaran yang dibuat

Arah ditentukan dengan kaidah tangan kanan
Perhatikan gambar

Sebuah kawat melingkar berada pada sebuah bidang mendatar dengan dialiri arus listrik

Apabila kawat melingkar tersebut dialiri arus listrik dengan arah tertentu maka disumbu pusat lingkaran akan muncul medan magnet dengan arah tertentu. Arah medan magnet ini ditentukan dengan kaidah tangan kanan.
Dengan aturan sebagai berikut:
Apabila tangan kanan kita menggenggam maka arah ibu jari menunjukkan arah medan magnet sedangkan keempat jari yang lain menunjukkan arah arus listrik

Keterangan gambar :

Sebuah kawat melingkar dialiri arus listrik sebesar 4 A (lihat gambar). Jika jari-jari lingkaran 8 cm dan arak titik P terhadap sumbu kawat melingkar adalah 6 cm maka tentukan medan magnet pada :
a. pusat kawat melingkar ( O )
b. dititik P

Jawab :
Diketahui : I = 4 A
a = 8 cm = 8 . 10 – 2 m
x = 6 cm = 6 . 10 – 2 m

sin θ = a / r = 8 / 10 = 0,8
Ditanya : a. Bo = ……. ?
b. BP = ……. ?
Dijawab :

1. Medan Magnet

Hukum Biot Savart

Sebuah kawat apabila dialiri oleh arus listrik akan menghasilkan medan magnet yang garis-garis gayanya berupa lingkaran-lingkaran yang berada di sekitar kawat tersebut. Arah dari garis-garis gaya magnet ditentukan dengan kaidah tangan kanan (apabila kita menggenggam tangan kanan ibu jari sebagai arah arus listrik sedang keempat jari yang lain merupakan arah medan magnet)
(Hk. Oersteid)

Keterangan :

Apabila sebuah jarum kompas ditempatkan disekitar kawat berarus ( lihat gambar), maka jarum kompas akan mengarah sedemikian sehinga selalu mengikuti arah medan magnet



Keterangan :

Kuat medan magnet di suatu titik di sekitar kawat berarus listrik disebut induksi magnet (B).
Besar Induksi maget (B) oleh Biot dan Savart dinyatakan :

  • Berbanding lurus dengan arus listrik (I)
  • Berbanding lurus dengan panjang elemen kawat penghantar (ℓ)
  • Berbanding terbalik dengan kuadrat jarak antara titik itu ke elemen kawat penghantar
  • Berbanding lurus dengan sinus sudut antara arah arus dan garis penghubung titik itu ke elemen kawat penghantar

Secara matematis untuk menentukan besarnya medan magnet disekitar kawat berarus listrik digunakan metode kalkulus. Hukum Biot Savart tentang medan magnet disekitar kawat berarus listrik adalah

Keterangan:

  • dB = perubahan medan magnet dalam tesla ( T )
  • k =
  • μo = permeabilitas ruang hampa =
  • i = Kuat arus listrik dalam ampere ( A )
  • dl = perubahan elemen panjang dalam meter (m)
  • θ = Sudut antara elemen berarus dengan jarak ke titik yang ditentukan besar medan
    magnetiknya
  • r = Jarak titik P ke elemen panjang dalam meter (m)

Medan Magnet

Medan Magnet di Sekitar Kawat Lurus

Besarnya medan Magnet disekitar kawat lurus panjang berarus listrik. Dipengaruhi oleh besarnya kuat arus listrik dan jarak titik tinjauan terhadap kawat. Semakin besar kuat arus semakin besar kuat medan magnetnya, semakin jauh jaraknya terhadap kawat semakin kecil kuat medan magnetnya.

Berdasarkan perumusan matematik oleh Biot-Savart maka besarnya kuat medan magnet disekitar kawat berarus listrik dirumuskan dengan :

  • B = Medan magnet dalam tesla ( T )
  • μo = permeabilitas ruang hampa =
  • I = Kuat arus listrik dalam ampere ( A )
  • a = jarak titik P dari kawat dalam meter (m)

Arah medan magnet menggunakan aturan tangan kanan

Medan magnet adalah besaran vector, sehingga apabila suatu titik dipengaruhi oleh beberapa medan magnet maka di dalam perhitungannya menggunakan operasi vektor.
Berikut ditampilkan beberapa gambar yang menunnjukkan arah arus dan arah medan magnet.
Arah medan magnet didaerah titik P ( diatas kawat berarus listrik ) menembus bidang menjauhi pengamat sedang didaerah titik Q dibawah kawat berarus listrik menembus bidang mendekati pengamat.
Tanda titik menunjukkan arah medan menembus bidang mendekati pengamat.
Tanda silang menunjukkan arah medan menembus bidang menjauhi pengamat.
Tanda anak panah biru menunjukkan arah arus listrik.

Pada sumbu koordinat x, y, z kawat berarus listrik berada pada bidang xoz dan bersilangan dengan sb. Z negative. Arah arus listrik searah dengan sumbu x positif.
Jarak antara kawat I dengan titik pusat koordinat (O) adalah a maka besarnya medan magnet dititik (O) tersebut searah dengan sumbu y negative.

Keterangan gambar:
I = arus listrik
B = medan magnet
Tanda panah biru menunjukkan arah arus llistrik

Contoh :

Sebuah kawat lurus panjang dialiri arus 5 miliampere berada diruang hampa . Tentukan besarnya induksi magnetic pada titik yang berada sejauh 10 cm disebelah kanan kawat, bila kawat vertikal ?

Jawab :
Diketahui : I = 5 miliampere = 5 . 10 – 3 Ampere
a = 10 cm = 0,1 meter
Ditanya : B = ………….?
Dijawab :

Sebuah kawat berada pada sumbu x dialiri arus listrik sebesar 2 A searah dengan sumbu x positif . Tentukan besar dan arah medan magnet dititik P yang berada pada sumbu y berjarak 4 cm dari pusat koordinat 0 ( lihat gambar) ?

Dijawab :
Dketahui : I = 2 A
a = 4 . 10 – 2 m
Ditanya : Besar dan arah B ….. ?
Dijawab :

listrik magnet


energi kapasitor

kapasitor


Energi yang tersimpan dalam kapasitor ( W ) dinyatakan dengan persamaan
W = q2/C
= qV
= C V2

Keterangan:
W = Energi yang tersimpan dalam kapasitor, J
q = muatan pada kapasitor, coulomb
C = kapasitas kapasitor, farad
V = Beda potensial, volt

1. Kapasitas sebuah kapasitor keping sejajar bergantung pada .......
1. luas keping
2. muatan listrik pada keping
3. bahan di antara keping
4. beda potensial antara dua keping
Pernyataan yang benar adalah .......

A. 1, 2 dan 3
B. 1 dan 3
C. 2 dan 4
D. 4 saja
E. semua benar


2. Kapasitas kapasitor keping sejajar .......
1. sebanding dengan luas keping
2. tergantung pada macam dielektrik yang digunakan
3. berbanding terbalik dengan jarak kedua keping
4. makin besar bila muatan kapasitor diperbesar
Pernyataan yang benar adalah .......

A. 1, 2 dan 3
B. 1 dan 3
C. 2 dan 4
D. 4 saja
E. semua benar


3. Kapasitansi suatu keping sejajar yang bermuatan adalah .......

A. berbanding lurus dengan besar muatannya
B. berbanding terbalik dengan beda potensial antara kedua kepingnya
C. makin besar jika jarak antara dua keping diperbesar
D. makin besar apabila luas kedua keping diperbesar
E. tidak bergantung pada medium antara kedua keping

4. Sebuah kapasitor terbentuk dari dua lempeng aluminium yang luas permukaannya masing-masing 1 m2, dipisahkan oleh selembar kertas parafin yang tebal\nya 0,1 mm dan konstanta dielektriknya 2. Jika c0 = 9 × 10-12 C2N-1m-2, maka kapasitas kapasitor ini adalah .......

A. 0,35 μF
B. 0,25 μF
C. 0,18 μF
D. 0,10 μF
E. 0,05 μF


5. Sebuah kapasitor mempunyai kapasitas sebesar 5 μF bila ada udara di antara keping-kepingnya, dan 30 μF bila antara keping-kepingnya ditempatkan lembaran porselen. Konstanta dielektrik porselen adalah .......

A. 0,17
B. 6
C. 25
D. 35
E. 150


Susunan kapasitor


Susunan Seri Kapasitor


Pada susunan seri kapasitor berlaku Kapasitor equivalen

  • muatan pada tiap-tiap kapasitor adalah sama, yaitu sama dengan muatan pada kapasitor pengganti qs = q1 = q2 = ....
  • Beda potensial pada ujung-ujung kapasitor pengganti adalah sama dengan jumlah beda potensial ujung-ujung tiap kapasitor V s = V 1 + V 2 + ....
  • Besarnya kapasitas kapasitor pengganti susunan seri dari beberapa buah kapasitor dapat dihitung V s = V 1 + V 2 + ....

    karena qs = q1 = q2 = .... maka


Susunan Paralel Kapasitor

Pada susunan paralel kapasitor berlaku Kapasitor equivalen

  • Beda potensial tiap-tiap kapasitor sama, yaitu sama dengan potensial sumber
    Vp = V1 = V2 = ....

  • Muatan kapasitor pengganti sama dengan jumlah muatan tiap-tiap kapasitor
    qp = q1 + q2 ....

  • Untuk menentukan besar kapasitas kapasitor pengganti susunan paralel CP dari beberapa buah kapasitor dapat dihitung

    qs = q1 + q2 + ....
    VpVp = C1V1 + C2V2 +..... karena Vp = V1 = V2 = ....



Contoh soal
Dibawah ini tertera skema rangkaian 5 buah kapasitor yang sama besarnya. Kapasitas antara K dan M adalah ....


kapasitas kapasitor

Kapasitas Kapasitor

Ketika kapasitor dihubungkan dengan sumber tegangan (misalnya baterai atau sumber tegangan yang lain) kapasitor akan menyimpan muatan. Besarnya kapasitas muatan yang tersimpan dalam kapasitor disebut kapasitas kapasitor. Besarnya kapasitas kapasitor disebut kapasitansi. Kapasitas kapasitor adalah banyak muatan yang tersimpan dalam kapasitor ketika di hubungkan dengan beda potensial tertentu. Besarnya kapasitansi (C) adalah.

Keterangan
C = Kapasitas kapasitor, farad
q = muatan yang tersimpan, coulomb
V = beda potensial, volt

Pada Umumnya besaran kapasitor C diukur dalam satuan mikrofarad (F) atau pikofarad (pF). Hubungan antara farad,mikrofarad dan pikofarad dapat dinyatakan sebagai berikut:
1 F = 10-6 F
1 pF = 10-12F



Sebuah kapasitor dengan kapasitas 0,5 F dimuati dengan baterai 12 volt. Hitunglah besar muatan yang tersimpan dalam kapasitor tersebut
Jawab
C = 0,5 10-6F
V = 12 V

Q = C.V
= 0,5 . 10-6(12)
= 6.10-6 C

Kapasitor yang paling sederhana adalah kapasitor keping sejajar yang terdiri dari 2 keping logam seluas A yang terpisah pada jarak d, seperti terlihat pada gambar berikut:



Pada keping sejajar nilai kapasitas kapasitor dinyatakan

Untuk penyekat udara εr=1, sehingga nilai kapasitas kapasitor

Tampilan:
C = kapasitas keping sejajar, farad
εr = permitivitas relatif bahan penyekat
ε = permitivitas bahan penyekat
ε0 = permitivitas vakum
8,5 x 10-12C2/N-1m-2
d = Jarak antar keping, m

Contoh soal
Hitunglah kapasitansi keping sejajar dengan ukuran (0.1 m x 0.1m) yang berada di udara dengan jarak antar keeping 5 mm.
Dengan ε0 = permitivitas vakum

8,5 x 10-12C2/N-1m-2

Jawab
A = 0,1 x 0,1 = 10-2 m2
d = 5 x 10-3 m
εr = 1